Equations & Constants

$$\begin{bmatrix} A \end{bmatrix} = -kt + \begin{bmatrix} A \end{bmatrix}_{0} & \frac{1}{\begin{bmatrix} A \end{bmatrix}} = kt + \frac{1}{\begin{bmatrix} A \end{bmatrix}_{0}} & \ln \begin{bmatrix} A \end{bmatrix} = -kt + \ln \begin{bmatrix} A \end{bmatrix}_{0} & t_{\frac{1}{2}} = \frac{0.693}{k} \\ t_{\frac{1}{2}} = \frac{\begin{bmatrix} A \end{bmatrix}_{0}}{2k} & t_{\frac{1}{2}} = \frac{1}{k \begin{bmatrix} A \end{bmatrix}_{0}} & k = Ae^{-E_{a}/RT} & \ln (k) = -\frac{E_{a}}{R} \left(\frac{1}{T}\right) + \ln (A) & K_{P} = K (RT)^{\Delta n} \\ F = ma & P = F_{A} & P_{1}V_{1} = P_{2}V_{2} \text{ or } P_{1}V_{1} = P_{f}V_{f} & \frac{P_{1}V_{1}}{T_{1}} = \frac{P_{2}V_{2}}{T_{2}} & PV = nRT \\ D = \frac{MP}{RT} & P_{total} = P_{1} + P_{2} + \cdots & X_{x} = \frac{n_{x}}{n_{total}} & P_{x} = X_{x}P_{total} & P_{total} = \sum_{i} X_{i}P_{i} \\ C_{gas} = k_{H}P_{gas} & u_{rms} = \sqrt{\frac{3RT}{M}} & \frac{u_{x}}{u_{y}} = \sqrt{\frac{M_{y}}{M_{x}}} & \frac{r_{x}}{r_{y}} = \sqrt{\frac{M_{y}}{M_{x}}} & P = \frac{nRT}{V - nb} - \frac{n^{2}a}{V^{2}} \\ \pi = iMRT & \Delta T_{b} = iK_{b}m & \Delta T_{f} = iK_{f}m & 8.314\frac{J}{m0!K} & 0.0821\frac{L \cdot atm}{m0!K} \\ \Delta S_{univ} = \Delta S_{sys} + \Delta S_{surr} & \Delta S_{surr} = -\frac{\Delta H}{T} & \Delta G = \Delta H - T\Delta S & \Delta G^{\circ} = -RT \ln K \\ \Delta G = \Delta G^{\circ} + RT \ln Q & \Delta G = -nFE_{cell} & \Delta G^{\circ} = -nFE_{cell}^{\circ} & E_{cell}^{\circ} = E_{cathode}^{\circ} - E_{anode}^{\circ} \\ E_{cell} = E_{cell}^{\circ} - \frac{0.0592}{n} \log Q & ax^{2} + bx + c = 0 & x = \frac{-b \pm \sqrt{b^{2} + 4ac}}{2a} \end{bmatrix}$$

$\stackrel{1}{\mathrm{H}}$																	H^2 e
1.008																	4.003
3	4											5	6	7	8	9	10
Li	Be											B	C		0	F	Ne
6.941	9.012											10.811	12.011	14.007	15.999	18.998	20.180
<u>11</u>	12											13	14	15	16	17	18
Na	Mg											AL	S 1	P	S	CI	Ar
22.990	24.305											26.982	28.086	30.974	32.066	35.453	39.948
19	20	2^{1}	22	23	24	25	$\frac{26}{5}$	27	28	29	30	31	32	33	34	35	36
K	Ca	Sc	11	V	Cr	Mn	ге	Co	N1	Cu	Zn	Ga	Ge	As	Se	Br	Kr
39.098	40.078	44.956	47.867	50.942	51.996	54.938	55.845	58.933	58.693	63.546	65.39	69.723	72.59	74.922	78.96	79.904	83.30
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Y	Zr	Nb	Mo	Te	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te		Xe
85.468	87.62	88.906	91.224	92.906	95.94	(98)	101.07	102.906	106.42	107.868	112.411	114.818	118.710	121.760	127.60	126.904	131.29
55	_56	_57	72	_73	74	_75	76	77	78	79	_80	81	82	83_	_84	85	86
Cs	Ba	La	Hf	Ta	W	Re	Os	lr	Pt	Au	Hg	Tl	Pb	B1	Po	At	Rn
132.902	137.327	138.906	178.49	180.948	183.84	186.207	190.23	192.217	195.078	196.967	200.59	204.383	207.2	208.980	(209)	(210)	(222)
87	88	89	104	105	106	107	108	109	110	111	112	113	- <u>114</u>	115			
Fr	Ra	Ac	Rf	Db	Sg	Bh	Hs	Mt	Ds	Kg	Uub	Uut	Uuq	Uup			
(223)	(226)	(227)	(261)	(262)	(263)	(262)	(265)	(268)	(271)	(272)			1	1			

$\overset{58}{\text{Ce}}_{}^{140.116}$	59 Pr 140.908	$\overset{60}{\text{Nd}}_{_{144.908}}$	$\Pr^{61}_{_{(145)}}$	${\mathop{\rm Sm}\limits_{}^{62}}$	$\mathop{Eu}_{}^{63}_{}^{}_{}_{}^{}_{}_{}^{}_{}_{}^{}_{}^{}_{}^{}}$	64 Gd 157.25	${\overset{65}{{}_{158.925}}}$	$\overset{66}{\text{Dy}}_{_{162.50}}$	${\mathop{\rm Ho}}_{{}^{164.930}}^{67}$	${\mathop{\rm Er}\limits_{}^{68}}$		${\mathop{Yb}\limits_{173.04}}^{70}$	71 Lu 174.967
90 Th 232.038	91 Pa ^{231.036}	92 U ^{238.029}	93 Np (237)	94 Pu (244)	${\mathop{\rm Am}\limits_{^{(243)}}}^{95}$	$\mathop{Cm}\limits_{^{(247)}}^{96}$	97 Bk (247)	${\mathop{Cf}\limits_{^{(251)}}}^{98}$	99 Es (252)	100 Fm (257)	$\mathop{Md}\limits_{\scriptscriptstyle (258)}$	102 No (259)	103 Lr (262)

Chemistry 1212 February 24, 2012 Exam #2

Write very clearly and <u>show all of your work</u> for partial credit. A list of equations and constants as well as a periodic table are on the last two pages of your exam.

Name

1.(20 points) Fill in the space with the correct response.

- (a) Write the equilibrium expression for: $2HgO_{(s)} + H_2O_{(l)} + 2Cl_{2(g)} \rightarrow 2HOCl_{(aq)} + HgO \cdot HgCl_{2(s)}$
- (b) If K_p for the reaction above at 25°C is 20 what is K_c ?
- (c) What is the half-life if the rate constant is $1.7 \times 10^{-3} \text{ s}^{-1}$ and $[A]_0 = 1.00 \text{ M}?$
- (d) If the units on the k constant are $\underline{M}^{-19}s^{-1}$ what is the overall order of the reaction?
- (e) If the rate for the consumption of oxygen gas is 2 <u>M</u>/s what is the rate of production of H₂O? $4NH_{3(g)} + 5O_{2(g)} \rightarrow 4NO_{(g)} + 6H_2O_{(g)}$
- (f) What is the order of the reaction if you get a linear plot from concentration versus time?

(g) How does K_c change if we reverse the reaction and multiple it by 3/2?

(h) Which side of the equation is favored if $K_c > 10^3$?

(i) What is the name we give to the number of successful collisions?

(j) If Q > K, then the reaction must proceed in the ______ direction to re-establish equilibrium.

2. (20 points) The following data were obtained for the reaction:

 $A + B \rightarrow C$

T (K)	[A]	[B]	Initial Rate (<u>M</u> /s)				
298	0.100	0.100	5.00				
298	0.200	0.100	40.00				
298	0.350	0.200	428.8				

(a) Determine the rate law. Show your work.

(b) What is the overall order of the reaction?

(c) Determine the rate constant (with correct units).

(d) What would be the initial rate for an experiment with $[C_2H_4Br_2] = 0.0508$ M and $[I^-] = 0.0844$ M?

3. (10 points) For the reaction mechanism below draw the reaction profile showing each elementary step, the transition state(s), and the $E_a(s)$. Make sure to properly place each species.

Step 1:
$$2A \rightarrow D$$
 (fast)Step 2: $D \rightarrow E$ (slow)Step 3: $E \rightarrow 2C$ (fast)

4. (18 points) When 1.000 mol of $C_5H_{11}N$ is introduced into a 1.000 L container at 500 K, only 3.63% will dissociate to give an equilibrium mixture. What is the equilibrium constant? In which direction would we go to re-attain equilibrium if we have the following concentrations: $\left[C_5H_{11}N_{(aq)}\right] = 0.100M$, $\left[OH_{(aq)}^{-}\right] = 0.100M$, and $\left[C_5H_{11}NH_{(aq)}^{+}\right] = 0.0100M$?

$$\mathbf{C}_{5}\mathbf{H}_{11}\mathbf{N}_{(aq)} + \mathbf{H}_{2}\mathbf{O}_{(l)} \rightleftharpoons \mathbf{C}_{5}\mathbf{H}_{11}\mathbf{N}\mathbf{H}_{(aq)}^{+} + \mathbf{O}\mathbf{H}_{(aq)}^{-}$$

5. (12 points) Will the amount of $NaHCO_3$ increase, decrease or remain the same when the equilibrium below is disturbed by one of the following stressors?

 $2NaHCO_{3(s)} \rightleftharpoons Na_2CO_{3(s)} + CO_{2(g)} + H_2O_{(g)} \quad \Delta H^\circ = +136 \, kJ$

(a.) a decrease in volume								
(b.) an increase in temperature								
(c.) an addition of water vapor								
(d.) an addition of a catalyst								
(e.) an addition of Ne								
(f.) an increase in pressure								